
Ternary Based Web Crawler For Optimized Search
Results

 Abhilasha Bhagat , Vanita Raut
 ME Computer Engineering, Assistant Professor Dept. of Computer Engineering

G.H.R.I.E.T., Savitribai Phule University, pune G.H.R.I.E.T., Savitribai Phule University, pune
 PUNE , India PUNE , India

Abstract:— In this proposed work, we have introduce a
technique called Ternary, which is an unsupervised proposal
that learns extraction rules from a set of web documents that
were generated by the same server-side template. Web data
extractors are generally used to extract data from web
documents in order to provide the relevant data to automated
processes. In this proposed approach, we have developed a
technique that works on two or more than two web
documents that are generated by the same server-side
template and learns a regular expression that models it and
can later be used to extract data from similar type of
documents. This proposed approach builds on the idea that
the template introduces some shared patterns that do not
provide any relevant data and therefore we can ignore such
shared pattern. In this work, we have briefly described various
web extracting techniques such as Roadrunner, ExAlg,
FivaTech with their pros and cons. This paper gives idea about
the search engine optimization in which we are implementing
search engine for getting the results for set of words.

Keywords: Automatic Wrapper Generation, Ternary Tree,
Unsupervised Learning, Web Data Extraction, Wrappers

I. INTRODUCTION
In this work, we have introduced a technique called Ternary
[1], which is an unsupervised learning approach that learns
extraction rules from a set of web documents that were
generated by the same server-side template. It generally
builds on the hypothesis that a shared pattern does not
provide any relevant data. Whenever this approach finds a
shared pattern, it partitions the input documents into the
prefixes, separators and suffixes that they induce and
analyses the results recursively, until no more shared
patterns are found. Prefixes, separators, and suffixes are
organised into a ternary tree that is later traversed to build a
regular expression with capturing groups that represents the
template that was used to generate the input documents.

The Web is a huge repository in which data are usually
presented using friendly formats, which makes it difficult
for automated processes to use them.

Fig. 1.1 describes the working of ternary tree, Ternary takes
a collection of web documents and a Natural range value
[min . . max] as input. Here, the web documents need to be
tokenised, and it does not required to be in correct XHTML
documents; The Range indicates the minimum and
maximum size of the shared patterns for which the
algorithm searches.

 Figure 1.1: Working of Ternary Tree

Data Types: A sequence of tokens is called Text and
represents either a whole input document or a fragment;
A ternary tree is a collection of Nodes, where each node
consist of a tuple of the form (T, a, p, e, s), where T is a
collection of Text, a is of type Text and contains a shared
pattern in T, p is a Node called prefixes, e is a Node called
separators, and s is a Node called suffixes.
Steps to Create Ternary Tree:
Step 1. Firstly, we have to create a root node with the input
web documents and sets a variable called s to max. Starting
with this node, the algorithm loops and searches for a
shared pattern of size s.
Step 2. If the such a pattern is found in the current node,
then it is used to create three new child nodes with the
prefixes, the separators, and the suffixes .The fragments
from the beginning of a Text up to the first occurrence of a
shared pattern is called the prefixes. The fragments in
between successive occurrences are called the separators.
The fragment from the last occurrence until the end of a text
is called suffixes. All these nodes are analysed recursively
in order to find whether any new shared patterns can be
found.
Step 3. Suppose if shared pattern is not found, that is, the
tree is not expanded, but variable s is greater or equal to the
minimum pattern size, then s is decreased and the procedure
is repeated again until a node in which no shared pattern of
size greater or equal to min is found.

Abhilasha Bhagat et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (5) , 2015, 4444-4449

www.ijcsit.com 4444

Step 4. Once the ternary tree [1] is built, we need to use an
additional algorithm to learn the regular expression that
represents the template used to generate the input web
documents. This algorithm traverses the ternary tree in
preorder; every time it reaches a leaf node that has
variability, it outputs a fresh capturing group to extract the
data that corresponds to that node; otherwise, it outputs the
shared pattern that corresponds to the node being analysed
and a closure or an optional operator depending on whether
that node is repeatable or optional

II. LITERATURE SURVEY
A. Road Runner:
I. Introduction
RoadRunner [2] is a parsing-based approach which are
using a partial rule (which is initialised to any of the input
documents) to parse another document and applies a
number of various generalisation strategies to correct the
partial rule when if any mismatches are found.
RoadRunner starts with the entire first input page as its
initial template. Then, for each subsequent page it checks if
the page can be generated by the current template. If it
cannot be generated by the current template then it
modifies its current template so that the modified template
can generate all the pages seen so far.
On Internet the large amount of information is available
in HTML format and it grows at a very fast rate ,that’s why
we can consider that the Web as the biggest “knowledge
base” which is publically available to the user.
Data extraction from HTML pages is usually performed by
software modules called wrappers. During Early days,
manual techniques have been used for wrapping Web
sites .But the key problem with manually coded wrappers is
that writing the wrapper is usually a difficult and labor
intensive task, and it is also difficult to maintain.

II. Advantages and Limitation of RoadRunner
1. RoadRunner does not depend on user-specified
examples, it also does not require any interaction with the
user during the wrapper generation process; this shows that
wrappers are generated and data are extracted is totally
automatic procedure.
2. In RoadRunner the wrapper generator has no a priori
knowledge about the page contents.(For example schema
of the HTML pages ,according to which data are
organized)
3. RoadRunner is not restricted to flat records, it can also
handle an arbitrarily nested structures.
There are several limitations to the RoadRunner approach:
1. RoadRunner [2] basically assumes that every HTML tag
in the input pages is generated by the template. This
assumption is very crucial in RoadRunner to check if an
input page can be generated by the current template. This
assumption is clearly invalid for pages in many web-sites
since HTML tags can also occur within data values.
For example, suppose if we consider a book review in
flipkart or any online shopping apps, it could contain tags -
the review could be in several paragraphs, in which case it
contains p tags, or some words in the review could be
highlighted using i tags. When the input pages contain such

data values RoadRunner will either fail to discover any
template, or there is a possibility that, it may produce a
wrong template.
2. RoadRunner assumes that the grammar of the template
used to generate the pages is union-free. This is equivalent
to the assumption that there are no disjunctions in the input
schema. However, the experimental evaluation says that,
RoadRunner might fail to produce any output if there are
disjunctions in the input schema.
3. When RoadRunner discovers that the current template
does not generate an input page, it performs a complicated
heuristic search involving backtracking for a new template.
This search is exponential in the size of the schema of the
pages. So, it is clear that, RoadRunner would scale to web
page collections with a large and complex schema.

B. EXALG:
I. Introduction
ExAlg [3] finds maximal classes of tokens that occur in
every input document, which are thus very likely to belong
to the template, and then refines them using a token
differentiation and a nesting criterion in order to construct
the extraction rule.
The ExAlg is used for extracting structured data from a
collection of web pages generated from a common
template. ExAlg first discovers the unknown template that
generated the pages and uses the discovered template to
extract the data from the input pages.
ExAlg uses two novel concepts, equivalence classes and
differentiating roles, to discover the template.

 FIGURE 2.1: SYSTEM ARCHITECTURE OF EXALG

Description:
ExAlg works in two stages:
1. Equivalence Class Generation Module
2.Analysis module

Abhilasha Bhagat et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (5) , 2015, 4444-4449

www.ijcsit.com 4445

Equivalence Class Generation Module
The input to Equivalence Class Generation Module
(ECGM) is the set of input pages P. The output of First,
Sub-module DIFF FORM differentiates roles of tokens in
P. and Equivalence Class Generation Module is a set of
LFEQs of dtokens and pages P that represents strings of
dtokens represents the input pages P as strings of dtokens
formed as a result of the differentiation.
The sub- modules FIND EQ, HAND INV and DIFF EQ
iterate in a loop. In each iteration, the input pages are
represented as strings of dtokens. This representation
changes from one iteration to other because new dtokens
are formed in each iteration. FIND EQ computes
occurrence vectors of the dtokens in the input pages and
determines LFEQs. FIND EQ needs two parameters, SIZE
THRES and SUP THRES, to determine if an equivalence
class is an LFEQ. Equivalence classes with size and support
greater than SIZE THRES and SUP THRES, respectively,
are considered LFEQs.
H AND INV processes LFEQs determined by FIND EQ,
and produces a nested set of ordered LFEQs.
DIFF EQ optimistically assumes that ach LFEQ produced
by H AND I NV is valid.. If any new dtokens are formed as
a result, it modifies the input pages to reflect the occurrence
of the new dtokens, and the control passes back to FIND
EQ for iteration. Otherwise, ECGM terminates with the set
of LFEQs output by HAND INV, and the current
representation of input pages as the output.
Building Template and Extracting Values
The input of A NALYSIS module is a set of LFEQs and a
set of pages represented as strings of dtokens, and the
output a template and a set of values.
ANALYSIS module consists of two sub-modules: CONST
TEMP and EX VAL.
In the Analysis Module, it uses the above sets to deduce the
template. The deduced template is then used to extract the
values encoded in the pages.

C. FiVaTech
Fiva Tech [4] first identifies nodes in the input DOM trees
which is having a similar structure and then aligns their
children and mines repetitive and optional patterns to
create the extraction rule.

Figure 2.2: System Architecture of FivaTech

Description:
The Figure 2.2 describes the system architecture of
FivaTech. It consists of two modules.
1. Tree Merging
2. Schema Detection

Tree Merging:
The tree merging module merges all input DOM trees at
the same time into a structure called fixed/variant pattern
tree, further which can be used to detect the template and
the schema of the Website that are used in the second
module. According to page generation model, data
instances of the same type have the same path from the root
in the DOM trees of the input pages. Therefore we do not
need to merge similar sub trees from different levels. The
task of merging multiple trees can be broken down from a
tree level to a string level.
After the string alignment step, Author has conducted
pattern mining on the aligned string S to discover all
possible repeats (set type data) from length 1 to length |s|/2.
After removing extra occurrences of the discovered pattern,
it is possible to decide whether data are an option or not
based on their occurrence vector. The four steps, peer node
recognition, string alignment, pattern mining, and optional
node detection, involve typical ideas that are used in current
research on Web data extraction. However, they are
redesigned or applied in a different sequence and scenario
to solve key issues in page-level data extraction.

Schema Detection
In this schema detection module, author have described the
procedure for detecting schema and template based on the
page generation model and problem definition. Detecting
the structure of a Website includes two tasks:
1.Identification of the schema 2.Defining the template for
each type constructor of this schema.

Advantages and Limitation

1. The total number of child nodes under a parent node
is much smaller than the total number of nodes in the
whole DOM tree or the number of HTML tags in a
Webpage, so the efforts which are required for
multiple string alignment in this work is less than
that of two complete page alignments in
RoadRunner.

2. The nodes with the same tag name but with different
functions that are performing can be better
differentiated by the subtrees that they represent.
Here In this work system recognize such nodes as
peer nodes and use to denote the same symbol for
those child nodes to facilitate the string alignment.

III. PROPOSED SYSTEM IMPLEMENTATION

A. System Architecture
Here, in this proposed work we have designed a Web
crawler based web indexing framework utilizing ternary
tree for an information extraction in a proficient manner,
and it requires less time and giving results in accurate
configuration according to client requirements. Each web
crawler has its own particular Ternary tree. On that

Abhilasha Bhagat et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (5) , 2015, 4444-4449

www.ijcsit.com 4446

separated information Ternary tree is continue and
information is partitioned in such a route along these lines,
to the point that we get prefixes, separator and Suffixes. In
order to recover the information from database and send to
the processor for processing the data, first we need to store
the information in the database.

 Figure 3.1: System Architecture of Proposed System

We can redesign positioning capacity and crawler to
recover and prepare just particular sites to plan application
particular web search tools i.e. for medicinal or instructive
purposes. We are actualizing positioning capacity to give
better results to set of questions. It is very hard to process
huge database and return sites which will contains different
decisive words presented by client. Ternary will help us to
give improved results for set of words and other thing
which gives also partially results with synonyms with help
of its structure which contain prefix, separators, suffix.

B. Modules of Proposed Work:
I. Web Crawler:
Now a days, Web sites present information on various
topics in different formats. Therefore so much effort is
required for a user to manually locate and extract useful
data from the Web sites. Therefore, we need value-added
service that integrates all information which has been
gathered from multiple sources. For example, customizable
Web information gathering robots/crawlers, i.e Web
crawler, comparison shopping agents, meta-search engines
and news bots etc. To facilitate the development of these
information integration systems, we need good tools for
information gathering and extraction. Suppose the data has
been collected from different
Web sites, a conventional approach for extracting data from
various Web pages would have to write programs, called
“wrappers” or “extractors”, to extract the contents of the
Web pages based on a priori knowledge of their format. In
other words, we have to observe the extraction rules in
person and write programs for each Web site.

II. Ternary:
 It is an unsupervised approach that learns extraction rules
from a set of web documents that were generated by the
same server-side template. It builds on the hypothesis that a
usually shared pattern does not provide any relevant data.
So, whenever it finds a shared pattern, it partitions the input
documents into the prefixes, separators and suffixes that
they induce and analyses the results recursively, until no

more shared patterns are found. Prefixes, separators, and
suffixes are, organised into a ternary tree that is later
traversed to build a regular expression with capturing
groups that represents the template that was used to
generate the input documents. Here , in this technique the
user does not need to provide any annotations; instead, user
interpret the resulting regular expression and map the
capturing groups that represent the information of his
interest with appropriate structures.

III. Content DB:
All the crawled text and keywords which we get after tree
generation are stored in database. The content of each page
which should be indexed analyser by search engine. All the
document and data are stored in index so that it would be
used later for query. A query from user can be single word
but from the whole database it is difficult to find so index is
the useful for finding such single word query of user as
quickly as possible.

IV. Inverted index DB2:
The indexer used to search the keywords from web pages
there keywords are used to store in inverted index database.
Index is formed by list of document and from that list of
document relevant data is search by inverted index. At the
same time we need to calculate ranking function.

V.Ranking Function:-
We are using ranking function to provide more appropriate
result to user which can be explain below. Ranking is
calculated when keywords are store at the time of crawling.
Rank (u) = 1-d/N + d (Σ R(v) /L(v))
 = 1-d/N + d (Σ R(v) /L(v)) + Σ R(v) /I(v))

 d = dumpling factor (Constant factor)
 Generally 0.85
 N→ No. of Keyword
 R (v) →Rank of page (child)
 L (v) →No. of links on that page
 I (v) → No. of incoming links

VI. Query Processor:
Whenever the user enters a query into a search engine using
keyword the engine examines its index and gives the best
matching result or web pages as per requirement of user.
The usefulness of search engine depends on relevancy of
result, while these are millions of web pages including word
or phrases ,someone most popular some are not .so to get
the most wanted data as per user requirement ranking is
very essential .

VII. Re- Ranking:
 If there is multiple word provided as input and in the same
order at that time we need to calculate re-ranking by using
the formulae .This re- ranking is have to be calculated
when we need to search the word.
 New Rank=d+Rank (u)
In this way, get the doc ids from the inverted index DB and
send doc ids to the content which is sent both to screen
search. It is not compulsory to store this data in database

Abhilasha Bhagat et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (5) , 2015, 4444-4449

www.ijcsit.com 4447

but it will improve time complexity of whole search engine
as it is less. In this we have finish with the web crawling
part.

C. Flowchart:

Figure 3.2: Flow Chart of Proposed System

.
IV. RESULTS

A. Input Datasets
In the calculation of web crawler which we have proposed
for web information extraction, we set website page parallel
to on to URL join
https://www.google.co.in/?gfe_rd=cr&ei=HItkVIyBOZSCu
ATErIDYCQ&gws_rd=ssl this connection crossed
completely till the end of body part in html page likewise
on each page it checks for the connection and crossed the
sub interfaces in along these lines web crawler navigated
every one of the connections for information extraction. We
give the cut-off of greatest 1000 connections ought to be
navigated so that on any framework it can run.

Figure 4.1: Output of web crawler

B. Output
In this above black window we can see that our given url
link is traversed thoroughly until the limit of maximum
1000 links should be fetch. When 1000 links traversed by
the web crawler the it stops fetching link. And below graph
shows the search result with the performance measure that
is precision, recall, F1 measure comparing with other
techniques our results are good.

Figure 4.2: Comparison Result

 V .CONCLUSION
We have presented an effective and efficient unsupervised
data extractor called Ternary. It is based on the hypothesis
that web documents generated by the same server-side
template share patterns that do not provide any relevant
data, but help delimit them. The rule learning algorithm
searches for these patterns and creates a ternary tree, which
is then used to learn a regular expression that represents the
template that was used to generate input web
documents.We are using web crawler to extract data and
each web crawler has its own Ternary tree .After that
calculating a ranking function to improve the result of
search as per user requirement .Also providing optimized
result for set of words by using ternary. Concentrating on
incoming and outgoing links to find relativity between
current, previous, and next page to compute the rank for

Abhilasha Bhagat et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (5) , 2015, 4444-4449

www.ijcsit.com 4448

keywords. Store all the keywords in database in order to
reduce the number of searches on ternary as pre order
traversal is less time consuming. Also we are giving partial
search result that is by adding synonyms.

REFERENCES
[1]. Sleiman, H., and Rafael Corchuelo. “Trinity: on using trinary trees

for unsupervised web data extraction.” (2013): 1-1.
[2]. Crescenzi, G. Mecca, and P. Merialdo, “RoadRunner: Towards

Automatic Data Extraction from Large Web Sites,” in VLDB ’01:
Proceedings of the 27th International Conference on Very Large
Data Bases. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., 2001, pp. 109–118.

[3]. Arasu, Arvind, and Hector Garcia-Molina. “Extracting structured
data from web pages.”, Proceedings of the 2003 ACM SIGMOD
international conference on Management of data ACM, 2003.

[4]. Kayed, Mohammed, and Chia Hui Chang. “FiVaTech: Page-level
web data extraction from template pages.” Knowledge and Data
Engineering,IEEE Transactions on22.2 (2010): 249-263.

[5]. Ashraf, Fatima, Tansel Ozyer, and Reda Alhajj “Employing
clustering techniques for automatic information extraction from
HTML documents.”Systems, Man, and Cybernetics, Part C:
Applications and Reviews IEEE Transactions on 38.5 (2008): 660-
673.

[6]. Chang, Chia-Hui, and Shih-Chien Kuo. “OLERA: Semisupervised
webdata extraction with visual support.” IEEE Intelligent systems
19.6(2004): 56-64.

[7]. Crescenzi, Valter, and Giansalvatore Mecca. “Automatic information
extraction from large websites.” Journal of the ACM (JACM) 51.5
(2004): 731-779.

[8]. Hsu, Chun-Nan, and Ming-Tzung Dung. “Generating finite-state
transducers for semistructured data extraction from the web.”
Information systems 23.8 (1998): 521-538.

[9]. Sleiman, Hassan A., and Rafael Corchuelo. “A survey on region
extractorsfrom web documents.” Knowledge and Data Engineering,
IEEE Transactions on25.9 (2013): 1960-1981.

[10]. Sleiman, Hassan A., and Rafael Corchuelo. “TEX: An efficient and
effective unsupervised Web information extractor.” Knowledge-
Based Systems 39 (2013): 109-123.

Abhilasha Bhagat et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (5) , 2015, 4444-4449

www.ijcsit.com 4449

